Ti-6Al-4V 合金激光熔覆 γ-NiCrAlTi/TiC+ $TiWC_2/CrS + Ti_2CS$ 高温自润滑耐磨复合涂层研究

刘海青1 刘秀波1 孟祥军1 孙承峰1 王明娣1 石皋莲2 吴少华2

(¹ 苏州大学机电工程学院,江苏 苏州 215006) ² 苏州工业职业技术学院,江苏 苏州 215104)

为提高 Ti-6Al-4V 钛合金的摩擦学性能,以金属陶瓷 NiCr-Cr₃C₂ 和自润滑颗粒 WS₂ 复合合金粉末为原料, 摘要 采用激光熔覆技术在钛合金表面制备出了以硬质 TiC 和 TiWC2 为耐磨增强相、Ti2CS 和 CrS 金属硫化物为自润滑 相的高温自润滑耐磨复合涂层。采用 X 射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)分析了涂层的 物相及显微组织结构;分别在室温、300 C和 600 C时利用 Si₃N₄ 陶瓷球对磨来测试涂层和基体的干滑动磨损性 能,并分析了其磨损机理。结果表明:复合涂层的平均硬度为1005 HV0.2,约为基体(360 HV0.2)的3倍,从室温到 600 °C,由于增强相 TiC、TiWC2 和自润滑相 CrS、Ti2 CS 的综合效应,复合涂层的摩擦系数和磨损率相比基体均显 著降低,具有良好的高温自润滑耐磨性能。

关键词 光学制造;固体润滑;高温耐磨复合涂层;Ti-6Al-4V **中图分类**号 O436 doi: 10.3788/CIL201441.0303005 文献标识码 A

Study on γ -NiCrAlTi/TiC + TiWC₂/CrS + Ti₂CS High-Temperature Self-Lubricating Wear Resistant Composite Coating on **Ti-6Al-4V by Laser Cladding**

Liu Xiubo¹ Meng Xiangjun¹ Sun Chengfeng¹ Wang Mingdi¹ Liu Haiqing¹ Shi Gaolian² Wu Shaohua²

¹ School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu 215006, China ² Suzhou Institute of Industrial Technology, Suzhou, Jiangsu 215104, China

Abstract To enhance the tribological behaviors of Ti-6Al-4V alloy, high-temperature self-lubricating wear resistant composite coatings reinforced with hard TiC and TiWC₂ carbides, self-lubricating Ti₂CS and CrS sulfides are fabricated by laser cladding. The phase compositions and microstructures are investigated by X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), respectively. Sliding wear tests of the composite coating and substrate are conducted at ambient temperature, 300 \degree and 600 \degree , with the Si_3N_4 ceramic ball as the counter-body, and the corresponding wear mechanisms are discussed. Results indicate that the mean microhardness of the composite coating (1005 $HV_{0.2}$) is about 2 times higher than that of substrate (360 HV $_{0.2}$). From ambient temperature to 600 °C , due to the combined effects of hard TiC and TiWC $_2$ carbides and self-lubricating Ti₂CS and CrS sulfides, both the friction coefficient and wear rate of the composite coating decrease in comparison with the substrate. The composite coating has excellent high temperature self-lubricating and wear resistant properties.

Key words optical fabrication; solid lubrication; high-temperature wear resistant composite coating; Ti-6Al-4V OCIS codes 140.3390; 350.3390; 350.3850

收稿日期: 2013-09-24; 收到修改稿日期: 2013-10-18

基金项目: 江苏省自然科学基金(BK20131155)、苏州市科技计划(SYG201349,SYG201233,SG201273)

作者简介:刘海青(1987—),男,硕士研究生,主要从事激光表面改性方面的研究。E-mail: liuhaiqing31311@163.com 导师简介:刘秀波(1968—),男,教授,硕士生导师,主要从事激光加工与材料表面工程等方面的研究。

E-mail: liuxiubo@suda.edu.cn; xiuboliu@aliyun.com

1 引 言

钛合金具有熔点高、密度低^[1]、比强度高、耐蚀 性和生物相容性好^[2]等突出优点,在航空航天^[3]、生 物医学^[4]等领域中得到广泛应用。但受硬度低^[5]、 耐磨性差^[6]等制约,一般不能用作重要的摩擦运动 副零部件。采用先进的表面工程手段在其表面制备 硬度高、耐磨性和摩擦相容性好的涂层无疑具有较 高的经济性和可行性^[5]。

在表面改性技术中,激光熔覆技术具备以下突 出优点:涂层与基体呈冶金结合,对材料无限制,稀 释率可控,组织细小,热影响区小等。目前,国内外 大部分研究集中在提高钛合金的硬度和耐磨性,未 考虑到与对偶件的摩擦相容性,采用激光熔覆技术 制备既具有良好耐磨性能又具有优异自润滑性能覆 层的研究已成为现阶段摩擦学领域研究的热点之 $-^{[6-7]}$ 。固体润滑剂 WS₂ 密度较高(7.5 g/cm³), 且因其近金属相性质与金属基体具有良好的润湿 性;又WS2属于六方晶系、层状结构,层与层之间受 范德瓦尔斯力作用,因此剪切强度较低,在摩擦力作 用下很容易在接触面形成润滑转移膜,降低摩擦副 的摩擦系数、减小磨损^[8-9]。NiCr-Cr₃C₂是一种常 用的金属陶瓷粉末,兼具 NiCr 合金与 Cr₃C₂ 粉末的 优点,在高温下具有优异的耐磨耐蚀、抗氧化等综合 性能[10-11]。

本文以 NiCr-Cr₃C₂ 混合合金粉末和 WS₂ 为原 料,采用激光熔覆技术在 Ti-6Al-4V 表面制备出了 以 γ -NiCrAlTi 镍基固溶体为增韧相,硬质 TiWC₂ 和 TiC 为耐磨增强相,Ti₂CS 和 CrS 为自润滑相的 高温自润滑耐磨复合涂层,较为系统地分析了 γ -NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS 复合涂层的 组织和摩擦学性能,旨在探索扩展钛合金商业应用 的新途径。

2 实验材料和方法

将 Ti-6Al-4V 合金基体(硬度约 360 HV_{0.2})切 割成 50 mm×40 mm×8 mm 的样品,采用砂纸打 磨,乙醇清洗。熔覆材料选用 Ni80Cr20-Cr₃C₂-30% WS₂(质量分数)金属陶瓷混合合金粉末,具体成分 见表 1。电子天平称重后,在球磨机(QM-3SP04)中 球磨 2 h。使用甲基纤维素作为粘接剂将混合粉末 预置在基体上,厚度约 1.5 mm,之后在干燥箱中 80 ℃保温 2 h。

表1 预涂复合粉末的化学成分(质量分数,%) Table 1 Composition of the mixed preplaced coating materials (mass fraction, %)

Element	Ni	Cr	$Cr_{3}C_{2}$	WS_2	
Content	17.5	3.5	49	30	

激光熔覆采用 GS-TFL-10 kW 型高功率横流 CO₂激光器。利用 MH-5 型显微硬度计测定涂层 的显微硬度,测试载荷 200 g,加载时间 10 s。采用 HT-1000 型球盘式高温摩擦试验机分别测定涂层 和基体在室温、300 ℃、600 ℃的干滑动摩擦学性 能,相对湿度为 80%。具体实验参数和实验过程可 参见文献^[9-10,12]。

3 实验结果与分析

图 1 为激光熔覆 γ-NiCrAlTi/TiC+TiWC₂/ CrS+Ti₂CS复合涂层的X射线衍射(XRD)图谱, 可见涂层主要由 α-Ti、TiC、γ-NiCrAlTi、TiWC₂、 Ti_2CS 和 CrS 等相组成。由于 WS₂ 的分解温度 (510 ℃) 及氧化温度(539 ℃) 较低, 熔池中的大部 分WS2分解成W和S,之后部分S与Cr元素反应 生成 CrS, 而 W 与 Ti、C 结合生成 TiWC₂ 复合碳化 物。还有部分 S 元素和基体析出的 Ti、C 反应生成 Ti₂CS 复合硫化物。S 元素未能与熔池中 Ni、Ti 反 应生成其他硫化物,这是因为 NiS 与 TiS 的吉布斯 生成自由能远高于 WS2 及 CrS,另外高温熔池中 Cr 元素含量最高,其次为W,因此WS2及CrS优先从 熔池中析出。Ti 优先和 W、C 反应生成 TiC 和 TiWC₂。剩余的 Ti、Ni、Cr 和基体中析出的 Al 固 溶生成 γ-NiCrAlTi。熔池中发生的部分化学反应 如下:

 $TiWC_2/CrS+Ti_2CS$ composite coating

$WS_2 \rightarrow W + 2S$,	(1)
$S + O_2 \rightarrow SO_2$,	(2)
$Cr + S \rightarrow CrS,$	(3)

 $Ti + W + 2C \rightarrow TiWC_2$, (4)

 $Ti + C \rightarrow TiC$, (5)

 $2\mathrm{Ti} + \mathrm{C} + \mathrm{S} \rightarrow \mathrm{Ti}_2 \mathrm{CS}.$ (6)

Wang 等^[13]在研究激光熔覆镍基包覆微米 WS₂ 自润滑复合涂层时发现了类似现象。XRD 分析结果 表明:以 NiCr/Cr₃C₂-WS₂ 混合合金粉末为原料,采用 激光熔覆技术在 Ti-6Al-4V 表面制备出了以抗氧化 性能及韧性良好的 γ-NiCrAlTi 镍基固溶体为增韧 相,硬质 TiWC₂、TiC 为耐磨增强相,Ti₂CS 和 CrS 为 自润滑相的高温自润滑耐磨复合涂层。

图 2 为激光熔覆 γ-NiCrAlTi/TiC+TiWC₂/ CrS+Ti₂CS 复合涂层的横截面扫描电子显微镜 (SEM)照片。从图 2(a)可以看出涂层未出现孔洞, 与基体形成了良好的冶金结合。从图 2(b)可以发 现 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS 高温自 润滑耐磨复合涂层与 Ti-6Al-4V 合金基体之间存在 一条细窄的白亮带,称为熔合区。在高能量密度的 激光束加热作用下,在形成熔池的过程中,熔池和基 体之间元素浓度梯度大,熔池与相邻基体之间的合 金元素互相强烈扩散,凝固后在基体和涂层之间形 成了这一化学成分既不同于涂层又不同于基体的过 渡区。熔合区的存在使表面涂层与基体形成了良好 的冶金结合。仔细观察可以发现结合区和热影响区 组织为细小的 $\alpha + \beta$ 等轴晶,靠近涂层附近的热影响 区的组织为针状马氏体。Ti-6Al-4V 合金温度由 882 ℃降低到 850 ℃时,β相会向 α相转变,并且当 冷却速度过快、超过 200 C/s 时,β 相转变为 α 相的 过程来不及进行, β相将会转变为针状马氏体[14]。图 2(c) 为激光熔覆 γ-NiCrAlTi/TiC+TiWC₂/CrS+ Ti₂CS 复合涂层的横截面典型区域组织的 SEM 照 片。涂层的显微组织结构为深灰色不规则结构 A 和灰色块状 B, 絮状的灰白色初生相 C 和黑色球状 D。表 2 为图 2(c)中各区域的元素分析结果。能谱 仪(EDS)分析结果表明:深灰色 A 主要含 Ti 和 C; 灰色块状 B 富含 Ti、W、C;涂层团絮状初生相 C 主 要含 Ni、Cr、Ti、Al;黑色球状 D 主要含 Cr、S、Ti、C。 结合 XRD 及 EDS 分析结果可以确定, 深灰色不规 则结构 A 为 TiC,灰色块状 B 为 TiWC₂,涂层团絮 状初生相C为γ-NiCrAlTi,黑色球状D为Ti₂CS 和 CrS, Ti₂CS 和 CrS 具有较好的自润滑效果^[8,15]。 采用激光熔覆技术在 Ti-6Al-4V 表面制备出了以抗 氧化性能及韧性良好的 γ-NiCrAlTi 镍基固溶体为 增韧相,以硬质 TiWC2、TiC 为耐磨增强相,Ti2CS、 CrS 为自润滑相的高温自润滑耐磨复合涂层。

图 2 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS复合涂层横截面 SEM 照片。(a) 全貌;(b) 结合区;(c) 中部典型组织 Fig. 2 SEM micrographs of γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS composite coating. (a) Overview;(b) bonding zone; (c) typical microstructure in the middle

表 2 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS复合涂层各区域 EDS 分析(质量分数,%)

```
Table 2 EDS analysis of γ-NiCrAlTi/TiC+TiWC<sub>2</sub>/CrS+Ti<sub>2</sub>CS composite coating at different areas (mass fraction, %)
```

Area	Ni	Cr	С	W	S	Ti	Al	V
А	1.46	1.97	18.63	2.88	—	74.50	0.56	—
В	2.58	3.30	13.84	60.30	0.71	19.27		—
С	7.38	27.67	3.60	2.96		51.71	4.09	2.58
D	5.20	32.91	15.47	3.65	25.48	17.29	—	—

图 3 为激光熔覆 γ-NiCrAlTi/TiC+TiWC₂/ CrS+Ti₂CS 复合涂层沿层深方向的显微硬度分布。 涂层深色相为高硬度的 TiC, 灰色块状 B 为硬度较高的 TiWC2。因此,涂层具有较高的硬度且分布比

较均匀,涂层平均显微硬度 1005 $HV_{0.2}$,约是 Ti-6Al-4V 基体的 3 倍。增强相 TiC 和 TiWC₂ 对涂层 硬度的增加起到了重要的作用。由 γ -NiCrAlTi/ TiC+TiWC₂/CrS+Ti₂CS 复合涂层组织物相以及 显微硬度分析结果可以推测,该复合涂层将具有较 好的高温自润滑耐磨性能。

Fig. 3 Microhardness profile of $\gamma\text{-NiCrAlTi/TiC+}$ $TiWC_2/CrS\text{+}Ti_2CS \text{ composite coating}$

图 4 和图 5 分别为 Ti-6Al-4V 和激光熔覆 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS复合涂层在5 N 载荷下与 Si₃ N₄ 陶瓷球对磨时的摩擦系数及磨损 率随实验温度变化的曲线。从图 4 中可以看出,随 着温度的升高,Ti-6Al-4V的摩擦系数由高变低,而 涂层的摩擦系数先变小再升高。从室温到 600 ℃, γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS复合涂层 的摩擦系数均小于 Ti-6Al-4V 的摩擦系数。从图 5 中可以看出随着温度的升高,Ti-6Al-4V的磨损率 减少,而涂层的磨损率先减少然后略有升高。在整 个测试温度范围内,激光熔覆 γ -NiCrAlTi/TiC+ TiWC₂/CrS+Ti₂CS 涂层的磨损率均小于 Ti-6Al-4V 的磨损率,具有优异的耐磨性能。由于在复合涂 层中分布有大量的硬质 TiWC₂、TiC 相,可以有效 地降低其与摩擦副之间的粘着倾向,从而导致涂层 的摩擦系数较 Ti-6Al-4V 低。更重要的是涂层中含 有 Ti₂CS 和 CrS 金属硫化物自润滑相,可在摩擦对 偶之间形成润滑转移膜,把对偶件与涂层之间的直 接高应力接触转化为对偶件与润滑膜及润滑膜与涂 层之间的间接接触,对 γ -NiCrAlTi/TiC+TiWC₂/ CrS+Ti₂CS 涂层表面起到有效的保护作用,从而显 著减小摩擦系数和磨损率[16-17]。

图 6 为 Ti-6Al-4V 合金基体和 γ-NiCrAlTi/ TiC+TiWC₂/CrS+Ti₂CS 复合涂层在不同温度下

- 图 4 Ti-6Al-4V和 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS 涂层在不同温度下的摩擦系数
- Fig. 4 Friction coefficients of the Ti-6Al-4V substrate and γ -NiCrAlTi/TiC + TiWC₂/CrS + Ti₂CS composite coating versus temperatures

- 图 5 Ti-6Al-4V和 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS 复合涂层不同温度下的磨损率
- Fig. 5 Wear rates of the Ti-6Al-4V substrate and γ-NiCrAlTi/TiC + TiWC₂/CrS + Ti₂CS composite coating versus temperatures

的干滑动磨损形貌。可见,随着温度的升高,Ti-6Al-4V 合金磨损表面产生了严重的塑性变形、块状 剥落、犁沟以及团聚在一起的磨屑,磨屑嵌在摩擦副 之间形成了三体磨料磨损从而加剧磨损。可见,Ti-6Al-4V 合金的塑性变形在600 ℃时有所减轻,如表 3 所示, EDS 分析结果表明, Ti-6Al-4V 合金在 600 ℃时磨损表面氧的含量相对较高,这表明磨损 表面形成了较多的氧化膜,对基体起到保护作用,产 生了减摩抗磨的效果,这也与其摩擦系数和磨损率 与温度的变化关系结果相一致;同时,复合涂层磨损 表面随着温度的升高微坑逐渐减少。产生上述现象 的原因分析如下:1) 硬质增强相 TiC 和 TiWC2 在 涂层上部含量较多且分布较均匀,使得涂层表面抵 抗因对偶件压入而产生塑性变形以及犁沟的能力大 大增强;2) 涂层中的 CrS 和 Ti₂CS 自润滑相在磨损 过程中铺展在摩擦副的接触表面「如图 6(d)、(f)所 示],有效地减轻了塑性变形、粘着和犁沟作用,起到 了减摩抗磨的效果。由图 6(b)可见,复合涂层在常 温下的磨损表面出现许多微坑,这主要是由于在对 偶件表面微凸体的反复嵌入下,涂层有局部剥落倾 向,磨损机理主要为磨粒磨损;图 6(d)显示复合涂 层在 300 ℃时的磨损表面显微凹坑数量明显减少, 还存在许多转移膜层,分析认为是 CrS 和 Ti₂CS 自 润滑相在接触表面形成了转移膜,从而使对偶件与 消层之间的直接高应力接触部分转化为对偶件与润 滑膜及润滑膜与涂层之间的间接接触,对涂层表面 起到了有效的保护作用。所以复合涂层的摩擦系数 和磨损率较之基体都大大降低了(如图 4、图 5 所 示),磨损机理为磨粒磨损。图 6(f)显示复合涂层 在 600 ℃时磨损表面出现了局部剥落和少量微孔, 这是由于在连续干滑动摩擦过程中,CrS 和 Ti₂CS 自润滑相出现的部分氧化和分解,一定程度上导致 了转移膜的剥落,这也与涂层在 600 ℃时的摩擦系 数和磨损率与温度变化关系的结果相一致(如图 4、 图 5 所示)。根据表 3 可知,磨损表面氧的含量较 高,在 600 ℃时,磨损表面出现了明显的氧化迹象, 磨损机理主要为氧化磨损和转移膜的形成与剥落。 综上所述,在室温和 300 ℃时,基体合金的磨损机理 主要是严重的塑性变形和块状剥落;复合涂层的磨 损机理是轻微的磨粒磨损;在 600 ℃时,基体合金的 磨损机理之野为氧化磨损和转移膜的剥落。

图 6 (a)、(c)、(e) Ti-6Al-4V和(b)、(d)、(f)复合涂层在 20 ℃、300 ℃和 600 ℃的磨损形貌

Fig. 6 Wear morphologies of Ti-6Al-4V substrate at (a) 20 °C, (c) 300 °C, (e) 600 °C and composite coating at (b) 20 °C, (d) 300 °C, (f) 600 °C, respectively

```
表 3 Ti-6Al-4V 合金和激光熔覆涂层在 600 ℃干磨损表面的 EDS 分析(质量分数,%)
```

Table 3 EDS analysis results of the worn surface of Ti-6Al-4V alloy and laser clad coating after the

dry sliding wear test a	at 600 °C	(mass fraction,	%)
-------------------------	-----------	-----------------	----

Sample	Ti	Ni	Al	Cr	С	W	S	0
Ti-6Al-4V	72.9	—	4.06	—	—	—	—	23.04
Laser clad coating	21.11	8.61		20.64	4.22	15.48	2.75	27.19

4 结 论

1)采用激光熔覆技术,在Ti-6Al-4V合金基体 上制备出了 γ-NiCrAlTi/TiC + TiWC₂/CrS + Ti₂CS高温自润滑耐磨复合涂层;涂层未出现孔洞, 与基体形成了良好的冶金结合。

2) 涂层组织主要由抗氧化性能及韧性良好的 γ-NiCrAlTi 镍基固溶体、硬质 TiWC₂ 和 TiC 增强 相、Ti₂CS 和 CrS 金属硫化物自润滑相组成,其平均 显微硬度为 1005 HV_{0.2},约为基体的 3 倍。

3) 从室温到 600 ℃,由于复合涂层中高硬度

TiWC₂、TiC 增强相和 Ti₂CS、CrS 自润滑相的综合 效应,其摩擦系数和磨损率均比基体显著降低。在 室温和 300 ℃时,基体合金的磨损机理主要是严重 的塑性变形和块状剥落;复合涂层的磨损机理是轻 微的磨粒磨损。在 600 ℃时,基体合金的磨损机理 为磨粒磨损、轻微的犁沟和氧化磨损;复合涂层的磨 损机理主要为氧化磨损和转移膜的剥落。激光熔覆 γ-NiCrAlTi/TiC+TiWC₂/CrS+Ti₂CS 复合涂层 具有较好的高温自润滑耐磨性能。

参考文献

- 1 Tian Y S, Chen C Z, Li S T, *et al.*. Research progress on laser surface modification of titanium alloys[J]. Appl Surf Sci, 2005, 242(1): 177-184.
- 2 Moskalewicz T, Wendler B, Zimowski S, et al.. Microstructure, micro-mechanical and tribological properties of the nc-WC/a-C nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti-6Al-4V alloy[J]. Surf Coat Technol, 2010, 205(7): 2668-2677.
- 3 A P Serro, C Completo, R Colaco, *et al.*. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications[J]. Surf Coat Technol, 2009, 203(24): 3701-3707.
- 4 Baker T N, Selamat M S. Surface engineering of Ti-6Al-4V by nitridingand powder alloying using CW CO₂ laser[J]. Materials Science Technology, 2008, 24(2): 189-200.
- 5 Zhang Xianhu, Chao Mingju, Liang Erjun, *et al.*. *In-situ* synthesis of TiC-ZrC particulate reinforced Ni-based composite coatings by laser cladding[J]. Chinese J Lasers, 2009, 36(4): 998-1004.

张现虎, 晁明举, 梁二军, 等. 激光熔覆原位生成 TiC-ZrC 颗粒 增强镍基复合涂层[J]. 中国激光, 2009, 36(4): 998-1004.

- 6 M Li, J Huang, Y Y Zhu, *et al.*. Effect of heat input on the microstructure of *in-situ* synthesized TiN-TiB/Ti based composite coating by laser cladding[J]. Surf Coat Technol, 2012, 206(19): 4021-4026.
- 7 H Yan, A H Wang, K D Xu, *et al.*. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd: YAG multilayer laser cladding [J]. J Alloys and Compounds, 2010, 505(2): 645-653.
- 8 X B Liu, C Zheng, Y F Liu, *et al.*. A comparative study of laser cladding high temperature wear-resistant composite coating with the addition of self-lubricating WS₂ and WS₂/(Ni-P) encapsulation[J]. J Mater Process Technol, 2013, 213(1): 51-58.
- 9 Yang Maosheng. Research on Laser Cladding High-Temperature Wear-Resistant Composite Coating with the Addition of Solid Lubricant WS₂[D]. Suzhou: Soochow University, 2012. 7-9.

杨茂盛. 添加固体润滑剂 WS₂ 的激光熔覆高温耐磨复合涂层研 究[D]. 苏州:苏州大学, 2012. 7-9.

- 10 He Xiangming, Liu Xiubo, Yang Maosheng, *et al.*. Elevated temperature tribological behaviors of laser cladding nickel-based composite coating on austenitic stainless steel[J]. Chinese J Lasers, 2011, 38(9): 0903007. 何祥明,刘秀波,杨茂盛,等. 奥氏体不锈钢激光熔覆镍基复合 涂层高温磨损行为[J]. 中国激光, 2011, 38(9): 0903007.
- 11 Guifang Sun, Yongkang Zhang, Changsheng Liu, *et al.*. Micostructure and wear resistance enhancement of cast steel rolls by laser surface alloying NiCr-Cr₃C₂[J]. Mater Design, 2010, 31 (6): 2737-2744.
- 12 He Xiangming. Study on Laser Cladding Self-Lubricating Wear-Resistant Composite Coatings on Austenitic Stainless Steel[D]. Suzhou: Soochow University, 2012. 18-21. 何祥明. 奥氏体不锈钢激光熔覆自润滑耐磨复合涂层研究[D]. 苏州: 苏州大学, 2012. 18-21.
- 13 A H Wang, X L Zhang, X F Zhang, et al.. Ni-based alloy/ submicron WS₂ self-lubricating composite coating synthesized by Nd:YAG laser cladding[J]. Mat Sci Eng A-Struct, 2008, 475 (1): 312-318.
- 14 Li Jianing, Chen Chuanzhong, Zong Lei. Microstructure characteristics of Ti₃Al/TiC ceramic layer deposited by laser cladding[J]. Int J Refract Met H, 2011, 29(1): 49-53.
- 15 Skarvelis P, Papadimitriou G D. Plasma transferred arc composite coatings with self lubricant properties, based on Fe and Ti sulfides: microstructure and tribological behavior [J]. Surf Coat Technol, 2009, 203(10); 1384-1394.
- 16 X M He, X B Liu, M D Wang, et al.. Elevated temperature dry sliding wear behavior of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding[J]. Appl Surf Sci, 2011, 258(1): 535-541.
- 17 Xiubo Liu, Haiqing Liu, Yuanfu Liu, et al.. Effects of temperature and normal load on tribological behavior of nickelbased high temperature self-lubricating wear-resistant composite coating [J]. Composites Part B: Engineering, 2013, 53: 347-354.

栏目编辑:李志兰